Determining the Gaussian Modulus and Edge Properties of 2D Materials: From Graphene to Lipid Bilayers.

نویسندگان

  • Matthew Zelisko
  • Fatemeh Ahmadpoor
  • Huajian Gao
  • Pradeep Sharma
چکیده

The dominant deformation behavior of two-dimensional materials (bending) is primarily governed by just two parameters: bending rigidity and the Gaussian modulus. These properties also set the energy scale for various important physical and biological processes such as pore formation, cell fission and generally, any event accompanied by a topological change. Unlike the bending rigidity, the Gaussian modulus is, however, notoriously difficult to evaluate via either experiments or atomistic simulations. In this Letter, recognizing that the Gaussian modulus and edge tension play a nontrivial role in the fluctuations of a 2D material edge, we derive closed-form expressions for edge fluctuations. Combined with atomistic simulations, we use the developed approach to extract the Gaussian modulus and edge tension at finite temperatures for both graphene and various types of lipid bilayers. Our results possibly provide the first reliable estimate of this elusive property at finite temperatures and appear to suggest that earlier estimates must be revised. In particular, we show that, if previously estimated properties are employed, the graphene-free edge will exhibit unstable behavior at room temperature. Remarkably, in the case of graphene, we show that the Gaussian modulus and edge tension even change sign at finite temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites.

Understanding and controlling the interaction of graphene-based materials with cell membranes is key to the development of graphene-enabled biomedical technologies and to the management of graphene health and safety issues. Very little is known about the fundamental behavior of cell membranes exposed to ultrathin 2D synthetic materials. Here we investigate the interactions of graphene and few-l...

متن کامل

Closed-form Solution of Dynamic Displacement for SLGS Under Moving the Nanoparticle on Visco-Pasternak Foundation

In this paper, forced vibration analysis of a single-layered graphene sheet (SLGS) under moving a nanoparticle is carried out using the non-local elasticity theory of orthotropic plate. The SLGS under moving the nanoparticle is placed in the elastic and viscoelastic foundation which are simulated as a Pasternak and Visco-Pasternak medium, respectively. Movement of the nanoparticle is considered...

متن کامل

Limits of Coherency and Strain Transfer in Flexible 2D van der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding.

In flexible 2D-devices, strain transfer between different van-der Waals stacked layers is expected to play an important role in determining their optoelectronic performances and mechanical stability. Using a 2D non-linear shear-lag model, we demonstrate that only 1-2% strain can be transferred between adjacent layers of different 2d-materials, depending on the strength of the interlayer vdW int...

متن کامل

Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: modeling of structures and electronic properties

The latest achievements in 2-dimensional (2D) material research have shown the perspective use of sandwich structures in nanodevices. We demonstrate the following generation of bilayer materials for electronics and optoelectronics. The atomic structures, the stability and electronic properties of Moiré graphene (G)/h-BN bilayers with folded nanoholes have been investigated theoretically by ab-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 119 6  شماره 

صفحات  -

تاریخ انتشار 2017